DSN Progress Report 42-44 January and February 1978

On Decoding of Reed-Solomon Codes Over GF(32) and
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A new algorithm for computing a transform over GF(2"), where n = 5, 6, is developed
to encode and decode Reed-Solomon (RS) codes of length 2" - 1. Such an RS decoder is
considerably faster than the conventional transform decoder over GF{2" ).

l. introduction

Fast real-valued transforms over the group (Z ) )" were developed first by Green (Ref. 1) to decode the (32,6) Reed-Muller code
(Ref. 2) used by JPL in the Mariner and Viking space probes. Recently Gore (Ref. 3) extended Mandelbaum’s methods (Ref. 4)
for decoding Reed-Solomon codes. He proposed to decode RS codes with a finite field transform over GF(2"), where #n is an
integer. Michelson (Ref. 5) implemented Mandelbaum’s algorithm and showed that the decoder, using the transform over GF(2"),
requires substantially fewer multiplications than a standard decoder (Refs. 6-8). The disadvantage of his transform method over
GF(2") is that the transform length is an odd number, so that the most efficient FFT algorithm cannot be used.

In this paper, a new algorithm based on the methods of Winograd (Refs. 9, 10) is developed to compute a transform over
GF(2™) for n=5, 6. This transform algorithm over GF(2") for n = 5, 6 requires fewer multiplications than the conventional fast
transform algorithm described by Gentleman (Ref. 11). The algorithm is presented in detail in this paper only for the cases n =5,

6. This algorithm for RS codes over GF(2"), where n =2 has been treated previously by the authors using similar procedures
(Ref. 12).

! This work was supported in part by the U.S. Air Force Office of Scientific Research under Grant AFOSR-75-2798.
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Il. Cyclic Convolutions

The following algorithm for the cyclic convolution of two sequences is based on ideas due to Winograd (Refs. 9, 10). Let
GF(2") be the Galois field of 2" elements. Observe first that if X(u)= xot x U Y(u)= y, + yu™ for m=1, 2, be two
polynomials over GF(2"), then the product 7' (1) = X(u) Y(u) is computed as follows:

T'(w) = X(u) Y(u) = ¢, teu™ +c2u2’" 8]
where ¢, = Xg " Vp €, = (x0 +x,) - (y0 + yl) t Xy Yot X, ry,andc, =x, -y . Evidently there are exactly three
multiplications required to compute (1).

It is well known (Ref. 9) that if

b
|
—

Xu) =

™
RS
:?w"

x
H
(=]

and

Y(u) = Z ykuk

are (n - 1)-th degree polynomials, then the cyclic convolution of the coefficients of X (1) and Y(u) is given by the coefficients of
n-1
T(u) = X(u) Y(u) = Z Zkuk mod (1" - 1).
k=0

Now factor the polynomial ¥” - 1 over GF(2") into irreducible relatively prime factors, i.e.,

K
=1 = [T g,
i=1

where (gl.(u),gj.(u)) =1fori #j.

Then T(u) mod g(u) fori=1,2, ..., k can be computed, using Eq. (1). To evaluate T(u) from these residues the Chinese
remainder theorem is used. To show this, consider first the cyclic convolution of 3 elements. This is given in matrix form as
follows:

Y 49 4, 4, *o
Yy Tl 4 4, 4 Xy (2)
Y, a2, 4, 4, %5
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where Yy ap X, eGF(2"™) fori=0, 1, 2. The above convolution is obtained from the coefficients of

T(u) = (a, *a, u+a1u2) c(x, tx u +x0u2)mod (u+ D@? +u+l) (3)

where (1 + 1) and (u* + u + 1) are the irreducible factors of u® - 1 over GF(2).

To compute (3), let m(u) = (u + Du? +u +1)= m (u) my(u)=m () M (u)= m,(u) M,(u). The system of congruences
T(u) = T(u) mod m(u) for i =1, 2 is given by

T, (w)=(a, taju +a1u2) “(x, txu +x0u2) mod (u-1)=(a, ta,ta)  (x, +x, +tx,)

and

Il

T,(u) (a, tagu +alu2) <(x, txu +x0u2)mod W +u+1)

@, +a,)+ (g, ta)ul * [(x, +x,)+ (x, +x,)u] mod (u® +u+1)

By (1), T2(u) is given by

T, () (a, +a)) - (x, tx)t @, ta, ta,ta) (x, +x, +x, tx )+, ta)- (x2 tx,)

+(a, tap - (x; tx ) ut(ay ta) - (x, +x,) u*

M

(@, ta) - (x, +x,)+a, ta) - (x, +x5)+ (e, +ay) - (x, +x))

+(a, +a,)(x, +x,)] umod @?+u+l)

Evidently 3 multiplies are actually needed to compute 7, (). By Chinese remainder theorem for polynomials (Ref. 13), T(u)
can be reconstituted from 7' () and T, (u) by

i

Tuw) = T (w)M (u) le(u) + T, () M, (u) Mz_l(u) mod 1> - 1 4)

where M !(u) uniquely satisfies the congruence
M) M; ()= 1 mod m (u) fori = 1, 2.
These equations are satisfied by Ml‘l(u) =1and M;l(u) =u. Hence
Tu) = (a, tay ta,) - (x, tx +tx)+(a, tay) (x, +x )+(a, ta) (x, +x )+ (g, ta, ta ) (x, +x tXx4)
tla, ta) (x, tx )t ta) (x tx)utla,ta, ta) (x,+x, tx )t gy ta) (x) txg)
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+(a, +ag) - (x, +x )] u?

=y, tyu +y2u2 mod (&> - 1)

where
Yo=(aytagta ) (xy +x, +x)+(a, tay) - (x, +x ) +(a, +a)) (x, +x)
yy=lay tag ta ), tx txp) +(ay tay) - (x, +xg) Hag ta) - (x, +x,) ®)
Yy =(aytayta) - O +x +xg)+ (e, ta,) (x) txo)+(a, ta)) (x, +x))
If one lets
my = (a, tayta) - (x, tx, tx,)
my = (ay +ag) - (x, +x))
(6)
m, = (a, *a;) - (x, +xy)
my = (ag +a) (x; +x,)
Then (5) becomes

=m +m +
Yo = mytm tm

0 2

Yy = mgtmy tm

3

Yy = mytmytm,

From (6) the total number of multiplications needed to perform (2) is exactly 4. Now consider cyclic convolutions of 5
elements of GF(2"). Again such a convolution can be represented in matrix form as

Yo Qg dya,0a54, %o
Yy 4y a, 85 4,4, Xy
Vol T 4,850,044, x, (7)
Y3 d3d,4,4, 4, X3
Vs a4y 494, 4, a4 X4
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where y,, a;, x; € GF(2") fori =0, 1, 2, 3, 4. The matrix in (7) is a 5 X 5 cyclic matrix. This matrix equation can be obtained also
as the set of coefficients of

2 3 4 2 3 4 5
(a, tagu +au® +a,u” +au Wxy txgut x,u” +x u’ +xu”) mod (u° - 1)

bl

where u° - 1 factors into two irreducible factors over GF(2) as follows,

u5—1=(u+l)(u4+u3+u2+u+1),

Let m(u) = (u + D(® + w3 +u? +u + 1) = m () my(u) = m,(u) M, (u) = m,(u) M, (). The system of congruences T(u) =
T(u) mod myu) for i =1, 2 for this case is given by

2 3

= 3 N 2 4
Tl(u)_(a4+a0u+alu taut tagut) - (x, txgutx,u tx,u” +x ut)

=(a, ta, ta tay,tay)(x, tx;tx, +x tx,) mod (u - 1) (8a)

and
T,(u)=(a, tayu+ a1u2 + a2u3 + a3u4) c(x, txgut x2u2
+x1u3 +x0u4)
=l(a, ta,) +(a, ta)u+ (a, tay) u* + (a, ta;) u]

[, tx )t (x, tx Jut (x, tx,) u?

3 2

+(x1+x0)u3] mod (u* +u® +u tu+tl) (8b)

In order to compute (8b), let ¢y = (a4 + a3), ¢; = (ag +a3), ¢y = (ay +a3), c3=(a; +a3),dy = (x4 +x,), d; = (x5 +xg),
d, =(x, +x4),dy= (xy *x,). Thus,

T,w) = [c, +cutcu +eu’l - [d + du+du +du’]l mod @ +ud +u® +u+1) (8¢)
Now in (8¢) let

Au) = [c, + cout c2u2 + c3u3] . [do tdut a72u2 + d3u3]
= [(cy *c,u) + 142(c2 teyu)] - (4, + du)+ u2(c172 +d,u)]
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Next set Ay = (¢q + cyu), 4, = (¢, + c3u), By = (d, +d,u), B, =(d, + dyu). Then
Clu) = (A, +u*4)) + By +u’B,)
By (1) C(u) is given by
= 2 4
Cuw)= CotClut + Cu

where

Co=A, " B,=(c, tcu)- (d, tdu)

C,=A4, B, =(c, tcyu)(d, +du)
¢, =D, -¢-C,
where D, is defined to be
D =(@,+4,)) (B, +B)

= [y +ey) + (e, +ey) ul » [(d, +d)+(d, +d,)u]

To compute CO, C2, D1 , use (1) again to obtain,

C, = (c0 toeou) - (do +d1u)

o * do + ((co + cl) . (d0 td)- cody - c1d1)“ te, +d u?,

C,=(c, tcyu) - (d,+ d,u)

¢y rdyteytey)-dytdy)-cyrdy-cy d)ute, -du’,

and

Dy =g *te,)t(cy tey)ul - [(d, +d,)+(d, +d,)u]
Sleg tey) sy tdy) +((cyte, e tey)(dytd, +d +dy)
“(eg te)dy +dy) - (e +e)d +d))ut (e, +ey) (d, +d,)
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Thus, finally
Au) =c, °d0+((co+cl)-(do+d1)—co “dy - ¢ -dl)u

t((cyte,) d,td)-c, d,-c, ~d, te 'dl)u2

t((c,te,te te)(d,+d, +d +d)-(c, +c,)* (d, +d,)
o “27"%% %3 0 1 3 o “2 0o “2

“leytey) (@ *dy) - (g tey)(dytd)teyd,te
-, tey) d, tdy)te, d, +c -d3)u3

+((cl+c3)(d1+d3)—cl'a’ -c,*d, tc -dz)u4

+((c2 +c3) . (a’2 +d3)— c, " a?2

Hence T,(u) = ((u) mod u* +u® +u® +u+1is given by
T,(u) =by +bu+bu®+bu’

where

by=¢ordytlc tey) (e, +dy)te -d +(c,*¢;)(d,+d,)

o
|

pTlgre)dytd)te, ndyt(e tey)-(d +dy) e, - d,

by =(cy ¥y s (dy+dy) +tcydy +(c, +ey) - (d +dy)+ey - d,

by=legte,*e tey) (dy+d, +d +dy)+(c,*¢,) (d, +d))

tlegte)(dytd)tey-dy+(c,*c;) (d, +d,)

By the Chinese remainder theorem for polynomials (Ref. 13), T(u) can be reconstituted from

T(u) = T, ) M, () My () + T, (@) M,(u) M; " (@) mod u® - 1

- d

1

©)

(10)
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where M (u) = u® + u3 +u? +u+ l,M;‘(u) =1, M,uw)=u+l, M;l(u) = u3 + u, and where T,(u) and T, (u) are given in

(8a) and (9), respectively. By (10), T(u) is
T() =y, +yutyu* +yu’ +yut
where

Yo=agta ta, tayta) . (xg tx, +x, vx; tx,)

+(a0 +a3) . (x3 +xo) +(a1 +a3) . (x2 +x0)+ (a0 + az) . (x3 +x1)

tlaytay) O +x)+(a, *a +a, va): (e, tx;+x, +x)

yy=lagta ta, vayta,) (g tx, tx, v x4 x,)

t(a, tay) (xy+x))+(a ta)- (x, tx)
+(a, tag) (x, tx;)t (e tay) (x, +x))
+(a, +a,) " (e, +x)) ¥ (a, +a;) - (x, +x,)
F(ay+a,) s @y tx)+ (@, +ay) - (x, +x))

V,=la,vta, ta, ta; ta) (x,tx +tx,tx, +x,)

1 3

tlag tay) - (3 +x))+(g, +ay)  (x, +x) t (@ +a3) " (x, +x0)

t(a, ta,ta ta,)  (x, +x

o4 txytx ) t(e, ta) - (x, txy)

3
Y=g ta ta, tayta) (g tx, tx, txgtx))
t(aytay)  (x;+tx))t(a, +ay)-(x, tx,)t (@, ta): (x, +x,)
Tlag tagta va)) (xy +xytx, tx ) (e, ta) - (x, +xy),
y0=(a0+a1 ta,tagta): (x)+x tx, txy tx,)

2 1

tlay vay) Oy tx) +(a, vay) - (x, +x)) + e, *ay) - (x) +x))
tlagtagta vay): (o +xy+x, +x)+ (@ +a)) (x, +x)
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If one lets

m =(a0+a

o +a2+a3+a4)-(x0+x1+x +x +x4)

1 2 3

m, =(a, tay)- (x5 +x,)
m, =(a, tay)- (x, tx;)
m =(a0+a2)-(x3+x1)

m, =(a, tay)- (xl tx,)

a
(12a)
mg =, ta,ta, tay)(x, tx;+x, +x)
me =(a; ¥ ay) « (x, +x))
m, =@, *ag) - (x, +x;)
mg =(a, va,) - (x, +x,)
my = (a, +a3) * (x, +x)
Then, (11) becomes
Yo S tmy tmgtm, +mgtmg
Yy Tmetmy tmgtmtmgtm,
Yy Tmgtmy tmg tmy tmgtmg (12b)

= + + +
Yz =m +m +m6+m m2+m8 m9+m m

7 3 4

= + + + + +
Yy=mgtm tm, +m,tm, +m

2 3 5

Hence, by (12), the total number of multiplications required to perform (7) is 10.

Theorem 1 below, due to Winograd (Ref. 10), will be needed in the following.

147



Theorem 1: Let a and b be relatively prime positive integers and A be the cyclic ab X ab matrix, given by
Ax, ¥v)=f(x+y moda - b), 0<x y<ab

If 7 is a permutation of the set of integers {0, 1,...,ab- 1}, let

B(x, y) = A(n(x), 7()).

Then there exists a permutation 7 such that, if B is partitioned into b X b submatrices, each submatrix is cyclic and the
submatrices form an a X a cyclic matrix.

In order to compute transforms of length 2" - 1 over GF(2") for n =5 it will be necessary to compute a convolution of 15
values over GF(2"). Such a cyclic convolution can again be expressed in matrix form as a 15 X 15 cyclic matrix. The
permutation 7 in Theorem 1 for this 15 X 15 cyclic matrix is given by

34 567 8
39101713

71,=012 9 10 11 12 13 14
06 12 4 511 2 8 14

With this 7 the rows and columns of a 15 X 15 cyclic matrix can be partitioned into blocks of 5 X 5 cyclic matrices, such

that each block forms a 3 X 3 cyclic matrix. This 15-point cyclic convolution in cyclic matrix form of 5 X 5 blocks is as
follows:

E ABC Y

0 0
E | =|Bca Y, (13)
E, CAB Y,
where
Yo Yio Vs
Ve Yy Y1
Ey = Y12 s Ey =1y, s Ey= 1y, ’
Y3 Vi3 Vg
Y9 Ya Via
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H
)
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Now make the correspondences: a0<——>A, a1<-—>B, a2<—->C, y0<—>E0, y1+—>E1, y2<—>E , x0<-—+Y x <——>Y1 x,<—Y : then
by a procedure precisely similar to that used to compute the cyclic convolution of 3 elements, defined in (2), one obtams

E, = My+M, +M,

E| = My+M, +M, (14)

bty
il

M0 +M3 +M1

where
= (A+B+C) - (Y +Y, +Y)
= (C+A)- (¥, +Y),)
= (C+B) - (Y, +7Y,)
= (A+B)- (Y +Y))

Equation (14) requires 4 (5 X 5) cyclic matrix multiplies. To find M, for i =0, 1, 2, 3, one needs to multiply matrices of
form (4 + B + (), (C + 4), (C + B), and (4 + B) by vectors (¥, +Y +7Y,), (Y1+Y) (Y, +Y,), and (Y, +Y)),
respectively. For example consider M, = (C+4) - (Y, +Y,)

+ +
f0 aytag, a ta,a,ta,,a, ta,a,ta X, tx

1v g% T4, 10 " Xs
5 agta a0y, a3 ag,05%a,,,a,%ag XXy
M=t £ |5 @2 tapastagay ta,a,tagagta, X, tx,
1y aytagayta,, a,taga va a0, a, X3t Xg
14 Qg ta g8y tag agta, a4, a, a3 %ag x4‘+x14

Using the 5-point cyclic matrix in (7) and making the correspondences, o0 11V L0, 5005 Foy,s

<> <>
2y Ay g 4, g T Ay, )T, Ty, 03y Y g, 4,570 g, X TUX g F X X X, T, X ox, g,
X, <X +x,x +—->x + x.,, one obtains
3 i3 " *g 14
fo FotF, ¥ Fy+F +F +F,
f F0+F1+F9+F4+F5+F7
M o=\ 5, | = | Fy+F +F, +F, +F +F, (15)
1y FotF\ FF P +F, tFo+Fo+F o+ |
+F +F. +F +E +
f4 FO F1 F2 F3 IZ ,Fs
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where

= + + + a, +
F (ay tagtagta  ta ,ta,taytagta, +a )

. +x_ + +x _ tx. +
Cepg txgtx +x tx tx, +x ,+xg4x, +x ),

!
i

(ag tagtagtag) (e 3 txg+x 4+x),
Fy = @g*a taztag) - (x, +x, +x,, +x),
F =(a0+a5+a12+02)-(x1+x1

P X3t xg),

Fo=la,vayvagtag) (o tx, +x +x,,)

4
Fg = (ay*ag*ag+a *a,*a, *a,*a,,)
Sy by g b, b b xg Bx, )
Fg = (ag*a, *ta, +a)) (x, +x  +x,+x,)

Fy o= (agtagtagta, ) Oy txg+x,+x,,)

Fg = (agtay tagta ) (x,;+x, ¥x, +x,,)

Fy = (agtagtag+a, ) (X qtxs+x, +x,,)

Equation (15) requires 10 multiplies. In a similar manner each of the matrices M, M,, M, can be obtained using 10
multiplications. Thus by (14) the total number of multiplications needed to compute (13) is 40.

lll. A New Algorithm for Computing a Transform over GF(21) of 21" — 1 Points forn =5, 6

Let GF(2™) be the finite field of 2" elements. Assume that N is an integer that divides 2" - 1. Next, let the element
veGF(2") generate the cyclic subgroup of V elements, Gy = {r, Y?, ..., 7" =1}, in the multiplicative group of GF(2"). The
transform over this subgroup G, is defined by

N-1
A4, = > gy for 0<j<N-1
i=0

~.

where ¢, eGF(2"). Rewrite this in matrix form as
A=Wa, (16)
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where

! = ! ! = l]
W (wi’l.) and wii=r

Also let
N-1
AO = al
=0
and
A.=A_+B, for j=1,72, N-1
i 0 J
where
N-1 B
B; = 2 v’
i=1
That is, let

B=Wgz (17

where W is the (V- 1) X (V - 1) matrix ('yif)i %0 and g, B are the column matrices (a,) and (B].), respectively,

If N is a prime number p, one can find an element aeGF(p) which generates the cyclic subgroup of p - 1 elements. Hence a
permutation or substitution ¢ can be defined by

1,2, ..., p-2,p-1
g = mod p

a0, , PP =
where all the elements of this substitution are taken modulo p.

Using the above permutation, by (Ref. 14), one can permute the indices of B, @ W defined in (17) so that matrix W=
(7"(’)"0))l. 0 is cyclic. That is,

D
= a(i)o ()
Ba(f) E av(i) v

1
—

i~
1
—

i+j
= . ao(i) v

i
-

=
|

= ao(i)’yo(Hj) for j=1,2,...,p-1 (18a)

i
2
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This is reexpressed in matrix form as

[vo1]
1l
=
]

(18b)

where

B= B, ) W= (y° @y, and 7= (a,,)-

iL,j*0’
By (18a), B 1s a cyclic convolution of a_ @ and y°@ forj=1,2,---p- 1.

Letp-1=p, * p, - p, be the factorization of p- 1 into primes. If one lets ;= p, *p, "~-p,_, and b, = p,, by
Theorem 1 the cyclic matrix can be partitioned into b2 p matrices of size a, X a,. Next let ¢, = a, X b,, where a, = p,

“Ppy,_, and by = p,_,. If a, is not a prime, then a, X a, cychc matrix can be partitioned into b2 matrices of size a, X a,.
In general, a;= alﬂ X b;,,, where b,,, is a prime. If @;,, # 1, then each g; X g; cyclic matrix can be partitioned into b, |
matrices of size a;,, X a;,,. Otherwise, the procedure terminates. If the number of multiplications used to compute the
cyclic convolution of p; points is m; for i=1, 2, ---, r, then Winograd has shown (Ref. 10) that the number of
multiplications needed to compute a (p - 1)-point cyclic convolution is equal to N=m, « m, - - m,.

Let N = NN, --- N, where (N, N, ) 1 for i #j. Using the Chinese remainder theorem for integers it is shown by
Wlnograd in Refs 9, 10 that the transform matrix W' defined in (16) can be transformed into the direct product of W;, W,
, W, where Wl is the matrix of an Nypoint transform. Assume that m; is the number of multiplications needed to
perform an N;-point transform over GF(2") for i=1, 2, ..., k. Then, the number of multiplications required to compute an
N-point transform is m, « m, - - - my.

A. Transform over GF(2°%) of 31 Points

Consider the finite field GF(2°). Since N = 2% - 1 = 31 is a prime p, the cyclic convolution algorithm developed in the
previous section can be used to calculate the transform of 15 points over GF(25). For N = 31, the permutation ¢ is given by

_(12 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
9T\3 9 27 19 26 16 17 20 29 25 13 8 24 10 30 28 22 4 12 5

20 22 23 24 25 26 27 28 29 30} .o
15 14 11 2 6 18 23 7 21 1)™

Let y be a 31-st root of unity in GF(25). Using the above permutation, one can permute the indices of B, 4, W defined in
(17) so that the matrix, W = (7"("‘1)) j#0ls cyclic fori=1,2,...,30and j=1, 2, ..., 30. By Theorem 1, the cyclic matrix
W can be first partltloned into S X 5 blocks as follows:

W=(4,BC...)
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In terms of this matrix the convolution (18b) is given by

T A B CDEF S

1 1
T, B C A E F D S,
T, C A B F D E Sy
= (19)
T, D E F A B C S,
T, E F D B C A S
Ts/ F D E C A B Se
where
b, b3 bys bs
by bys bys b4
T, =] by, =] by »T3= | by, ' T,= 1 b, ’
by, by byo by
bg bys b30 bys
bl b, ¥ 20 410 .5 18
b, by y20 410 .5 18 9
T,= | b,, T, =| o, L A=) Y10 45 18 9 20
b, b, ¥S 418 49 420 i0
b, b, Y18 49 420 410 .5
A IV S L y14 4T 419 425 28
Y4 g2 4l 416 8 YT g1 425 428 14
B=| 4% 41 416 48 4 L= | 419 425 428 418 7
VIR LI RV NCEIIRY. LI LV L
Y16 48 44 42 Y8 414 T 19 25
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y22 41l 421 26 13 723 42T 429 430 15
yi1 421 426 41322 72T 429 430 15 23
D= | 421 428 413 422 n VE=| 429 430 415 423 427
y26 413 422 11 21 y30 415 23 27 29
y13 422 411 421 26 y15 423 427 429 30
P17 g2 412 a6 a3 a a,
yA 12 46 43 17 a,, a,
F=| 412 46 43 417 ,29 , 8, = | q,, . 5,= | 4,
Y A A a, a,
¥3 41T 424 412 46 a a,
45 %8 218 216
43 ay4 4 g
S35 @ | ST 9 Ss= | %0 | - S6™ | %
49 419 %10 )
%30 45 44 4
Observe that the matrix equation (19) can be further reduced as follows:
F, J K E, JEG+E)+U+K) - E,
N= = =
F, K J E, JE,+EN+(+K) - E,
where
T, T, A B C
F0 = T2 , F2 = Ts , J= B C 4 ,
T, T, C A B
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and

D E F
K=\ E F D
F D E

Now let
U =E,tE)-J
U,=+K) " E 20)
Uyj=(J+K)-E,

Then F, = U, + U,, F; = U, + Uj. Thus, 3(15 X 15) cyclic matrix multiplies are necessary to perform (20). By a
procedure precisely similar to that used to compute the 15 X 15 cyclic convolution in (13), the number of multiplications
needed to compute U, in (20) is 40. In a similar manner, each of the matrices U, and U, in (20) can be obtained with 40
multiplications. Thus, the total number of multiplications needed to perform (19) is 3 X 40 = 120.

B. Transform over GF(2°) of 63 Points

Since N=26-1=63=N, - N, =7-9, by Winograds algorithm one needs to compute an N-point transform over
GF(2%) for N;=7 or 9. The algorithms for computing these transforms over GF(2¢) are given in Appendix A. Let integer i
for 0<<i<63 be represented by a pair (i;, i,)= (i mod 3, i mod 5). Since 7 and 9 are relatively prime, by the Chinese
remainder theorem,

i=i +36+i, 28 mod 63 1)

is the required representation.

Let v be the 63rd root of unity in GF(2%). Also let v, =% mod 2 and y, = y7 mod 2 be the 7th and 9th roots of unity
in GF(2°), respectively. The 63rd point transform over GF(2%) in i, and i, is

63
- ij
A E a7
i=0
i 8 ii | i
- A2 | h
A(j ) Z Z a(il,i2)72 " (22)
172 =0 [iy=0
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where

8 ij forj, =0,1,2,...,6
andj2=0,l,2,...,8

or in matrix notation

where
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Thus, (22) becomes

or

12
Wi

'3
W271

1.6
W

Now by (21), one obtains A in terms of 4, as
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v
it
s
)
v

)
wWomi

(0,0)
(0,1)
(0,2)
(0,3)
(0,4)
(0,5)
(0,6)
0,7)

(0,8)

15
LS

'3
Wi

1.6
w271

forj1 =0,1, 2,
W, W
Wy WM
SHI A
Wk Wom
Wy Wy
Wn wm
Wy Wi
4,
Ass
Asq
4y
Ao
A,
A4y
4,
Ays

Wori
Wory
Womi
oy
W

' 1
w271




Similarly

|

(1,0)
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(1,7)

A48

(3,0)
3,1
(3.2)
(3.3)
(3.4)
(3,5)
(3,6)
(3.7)

(3.8)

(2,0)

2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

2.7)

(2,8)

(4,0)

4,1)

(4.2)

(4,3)

(4,4)

(4,5)

(4.6)

(4.7}

(4.8)
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(=}

(5.,0)

(s,1)

(5.2)

(5,3)

(5,4)

(5.5)

(5.6)

(5.7)

(5.8)

8|
.,
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26

(6,0)

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

(6,8)

34
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{ Qys \ Zyg \ , 254 ‘ 239

%10 246 219 455

238 244 244 230

a3 239 P Q48

ay = 23, sy = a4y sl = 240 (g = 23
259 23, as 244

24 260 233 2g

459 275 26y 234

\ 2yq ) l 253 / \ %26 262

Using the 7-point transform in (I1B) and making the correspondences, Y«—W,, v'<=W,v,, V=W, vi, v oWy,

74<——+W2'y‘1‘, 75<—>W£'y§, 76<——>W2'7?, one obtains

A = MO +M1 +M2 +M3 +M4 ‘|’Ms 'I'M6

A, =M, +M, tMo+M, M, M +M,

% =1‘40-*-‘}‘41 +M3 +M7+M9 +M10+M11

+AL}+A47+A{¢+A46+A48

A. =M +M -I*M7+M2+M9+M“+M12

N
I
N
+
=

+M2 +M3 +M9 +M12 +M10

where

My =W, @,+a, +a,+a,+a, +d  +d,)

M = W"(72+71+74+1)-(21'3+(74+21‘5+¢72+ﬁ6+ﬁl)
M, = w2’-(72+7‘)-(a'5+52+a3+ﬁ4) (23)
M, =W, '(74+72)(Zz'6 +7, +a +ay)

M, =W, -(@ +a,+a,)
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Mg =W, - (Y +7° +4' +9%) - @, +7,)
6 = WGP e 40 @ )
M, =W, °(74+71)'(‘76+El ta, +a,)
My =W, - (F+y3+9' 4% - @, +7,)
My =W, @ +2,+7) (23)
Mg =Wy (472477 47%) - @, +3,)

= W' . (G 3 1 6\ .(5 4=
M, =W, (" +7y +v +7°) - (@, *+7,)

M, =W, (P +7v° +4' +9%)- @, +7,)

Observe that all thirteen matrix multiplies in (23) are 9-point convolutions of exactly the same form as (8B). Thus one
may compute M, for j=0, 1, 2,3, ..., 12 in (23) with a procedure similar to that used to compute the convolution defined
by (8B). Thus, the number of multiplications for computing M, for j=0, 1, 2, ..., 12 is 16, excluding multiplications by 7°.
Hence, the total number of multiplications needed is 13 X 16 = 208.

IV. Comparison of New Algorithm with Gentleman’s Algorithm

fN=2"-1= N, * N, --- N, where (V, NJ.)= 1 for i#j, Gentleman shows in References 5 and 11 that an N-point
transform of such an N requires N(N1 +N, t-.-+ N_ - k+1) multiplications, including multiplications by unity. The
present algorithm for computing the (2" - 1)-point transform for n =35, 6 and Gentleman’s algorithm are compared in Table 1.
The number of multiplications needed to perform these algorithms is given in both cases. Evidently for # =5 and 6 the new
algorithm for computing the (2" - 1)-point transform requires considerably fewer multiplications than Gentleman’s algorithm.

V. Transform Decoder for Reed-Solomon Codes

It is shown in References 12 and 15 that RS codes can be decoded with a fast transform algorithm over GP(p™) and
continued fractions. There it was shown that the transform over GF(p”™) where p is a prime and n is an integer can be used to
compute the syndrome and error magnitudes. It follows from References 5 and 16 that the number of multiplications
required to perform the syndrome and error magnitude calculations for the standard decoder is approximately (N - 1) (d - 1)
+ 2, where N is the block length of the RS code in GF(2"),d=2t + 1 is the minimum distance of the code and ¢ is the
number of ‘allowable errors. (Note that the performance of the conventional decoder is dependent on the number of allowable
eITOTS.)

For (31, 15) and (63, 33) RS codes, the number of multiplications needed to compute the syndrome and the error
magnitudes is given in Table 2. The new algorithm, Gentleman’s algorithm, and the standard algorithm are compared in
Table 2 in terms of the number of multiplications needed to compute the syndrome and the error magnitudes for decoding
these RS codes.
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Appendix A

Consider V, = 7. Let vy be a 7th root of unity in GF(2%). The transform over GF(2°) is expressible as

{ 4, | / (A A A A 2y |
4, Y Y I - R - R a,
A, NN A TV B R a,
4 1= 72 »* 2 ¥ A a, (A1)
4, N R L P Y . a,
A, Y I R Y RV a
4, Y N A L A } a }

The permutation ¢ of N = 7 is given by

123456

326451

Applying the above permutation to (A-1), one obtains a 6 X 6 cyclic matrix equation. By Theorem 1, there exists a
permutation 7 of rows and columns so that the 6 X 6 cyclic matrix can be partitioned into a 2 X 2 block matrix of 3 X 3
cyclic matrices as

B, o B S VRV . a,
B, o SRR PV P a,
B, AT I R I a,
= (A-2)
5 6 3 2 1 4
B, 0 AR SR S S S a,
B, o T BV IV SRV S a,
B, R BV R R a
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or

where

D=(X, +X,)- A, E=(B-A): X, F=

Since 4 and B are cyclic matrices, it is evident that the matrix B ~ 4 is also a cyclic matrix. In (A-2), D is defined as

where

Y0=a3 ta,, Y1 =a, +a2,and Y2=a6

B 4 X

(X, +X,)-A+(B-4)- X,

(X, +X)) A+ (B-4)- X,

D+FE

D+F

B-4)-X,.

¥ ¥y
= Yoty
Yo !

+
(ll.

Using the 3-point cyclic convolution in (2) and making the correspondences, a0<——>72, a1<—*'yl, a2<—*'y4, x0+—>Y0,
x1<——*Y1, x2<-—>Y2, y0<——>d0, yl<—->dl, y2<——>d2, one obtains

164

O+ +9") (g e, vag ta, ta ta )+ (v +P)

a
-(aﬁ+a1 ta, +a5)+('y +'y1)-(a6+a1 ta, +a4)

(0 +y ) (g ta, o ta, ta va) (v +Y)

. 2 Iy.
(ag ta, tay;ta)+(v* +v") (a5+a2+”3+a4)

O+ +97) (a5 +a, tag ta, ta ta)+ (P +aY)

. (as ta, ta, +a4)+(74 +52) - (a6 ta, tag +a2)

(A-3)



Similarly,

€ IR IO P OV IV O a,
E={e | =] v +1 v+ 2+ a
e, YA 443 y2 445yl 46 a,
PP+ 47ty 408 (g tay ta )+ (P P 40 (g, ta ) (P Yty £98) (e, tay)
= O+ ey 48 (g ey ta ) Y 00 (@ ta )t (P Yy 490) (e, tay)
O+ +7 4 47 490 - g, tay +a )+ (P 8+ +90) (g e )+ (P + Y+ +45) - (e, tay)
(A-4)
and
£y Yyttt ey a,
F=| f =] V" +1®*+¥ v +7° ag
1, PV +yS oy 440 a,

P+ Sy 400 gy tag ra ) (Y H P 40 (g rag) + (Y Hy 490 - (g tay)

P+ 72+ 490 gy e +a )+ (Pt +00) (g ta) t (P Py +98) - (g tay)

P+ 4+ 4 400 @y tag ta) F (P Y +90) g e )+ (P H 4 45) - (g tay)
(A-5)

Each of the Egs. (A-3), (A-4), and (A-5) requires 4 multiplies.
Let

m, =1-(a,*a, ta, +ta, +ta, +a,+a)

3
It

(y? + ! +')/4+1)-(a3+a4+a5 ta, ta, +a))

m2 = (72 +71) : (as +a2 +ll3 +a4)

3
0

4, .2
m, =1-(a;+a,ta)
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mg = (P +y° 7 +7%) - (a5 *ay)
= 4 3 2 5y .
mg = (Y +y> P %) - (g *ag)

m, = (*+7") (o, ta, tay +a,)

3
|

g = (P 49%) (a4 tay)

R
"

1- (a4 ta, +a1)

3
]

o =P +9%) () tay)
m = (PP 400 (e tay)
my, = (7 £1%) (e, tay)

Thus, by (A-1), (A-2), (A-3), (A4), and (A-5), one obtains

Ay =my

A =mytm tmytmytm, tmgtmg

A, =mytmy tm,tmy tm, tmgtm,

A, =m0+m1+m3+m7+m9+m10+m“ (A-6)
Ay =mytm o tmytm, tm, tmgtmg

Ag =mytm tm, tm,tmgtm,, +m,

Ag = mytm tm, tmytmgtm, tm,

Thus, by (A-6), one observes that the number of multiplications needed to perform a 7-point transform over GFQ2") is 13,
including the multiplications by unit ¥0=1.

Consider Nl. = 32, Let v be the 9th root of unity. Since 1, 2, 4, 5, 7, 8 are relatively prime to 9, the permutation ¢ is
defined by

1,2,4,5, 7,8
g = (A7)
2,4,8, 7,5, 1
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1-2

2-2

4.2

5-2

7.2

8.2

3.2

6:2

1-4

2.4

4-4

5.4

7.4

8-4

3.4

6-4

Y BT yS a2
Y Yty
Yyt vty

YAyt Ry

YEy By 8

Yy Sy

Yy YTy B R
Y'Y Y Y
77 74 ')’l 72 ,75 ,),8

S e L A 2

Yyt

Yy ¥y vty

3:6

6-6

Applying the permutation defined in (A-7) to the indices of the upper left 6 X 6 matrix of (A-8), one obtains

By Theorem 1, the above matrix can be partitioned into a 2 X 2 block matrix of 3 X 3 cyclic blocks as

Rearranging the rows and columns of W defined in (17) in such a manner that the elements of matrix with indices relatively
prime to 9 form a block, one has

(A-8)

(A-9)
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Now if one makes the correspondences, yY2<>7*, Ylemyl, Y4e>7, YSey5, y0eqB, y3ey? B,—Y,, B—Y,,
B, Y, B,<—Y, B,<Y, B, =Y, a7, agag, agoag, a,c0a,, 4,404, a0 in (A-2), then by a
procedure similar to that used to compute the matrix defined in (A-2), one obtains

Y

+
" m, +m2 +m3+m4+m5 m

6
Y =m,1+m7+m2+m4+m8+m5

Y, smitmytm,vmytm g tm,
Y =m1+m3+m7+m4+m6+m8
Yo =m tmytmytmytm  tm,
Yo =m tmytmy+tmgtm,+m,

where

ol gl Ty
m, =(y*+y' +97) (a2+a7+a5+a4+a8+al)

3
0

4.1y,
, = (P tY)(agta, ta, tay)

3
I

7 4y .,
3 = (" tY7)  (agta, +ag+a,)

3
f

=1-(a, ta, tag)

3
I

s =Y+ 498 (g +ay)

me = (VT +72 +9t +95)  (gg +ay)
(A-10)

3
It

7 1y .
, ="ty (agta ta, ta,)

mg = (77 +72 71 +9%) - (ag *ay)
my =1-(a,ta, ta))
m = 07+ %) (e +a,)

3
n

=@ Y ) (e *ay)

3
I

2 SO 448 (g, +a)
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From (A-10), we know that the number of multiplications required to perform (32) is 10 excluding multiplications by v°

The last two columns of the matrix defined in (A-8) can be obtained by computing the following 2 X 2 cyclic matrix

X, b a, Y (2, ta )+ (¥ +1°%)a,
= = (A-11)
X, Yy a, ey ta)+(* +71%)a,
The last two rows of the matrix defined in (A-8) can be obtained by computing the following cyclic matrix
3 .6
Z, LA a, ta, *a,
= (A-12)
6 .3
Z, T a, tagtag

3 (al ta, ta, ta, tag +a8)+(73+76)(a2+a5 +a8)

3 3
¥ (al +a4+a7+(12+(15 +a8)+(7 +')/6)(a1 +a4+a7)

Note that the number of multiplications used to perform (A-11) or (A-12) is 3. Thus, the algorithm for computing the 9-point
transform is

by =1" (a0+a1+a2+a3+a4+a5+a6+a7+a8)

b, = Y +X, +t1-q,

b2 = Y2+X2+1'a0

b, =Zl+Zz+1-a3+1'aé+l-a0

b, = Y, +X +1-a, (A-13)

b =Y5+X2+1ca

o
It

Zz+Zl+1-a3+l-a6+l'a

o
1

Y7+X1+1'a

2l
I

Y8+X2+1'a

From (A-13), the total number of multiplications needed to perform a 9-point transform is 16, excluding multiplications by
the unit y° = 1.
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Table 1. The Complexity of Transform over GF(2") forn = 5, 6

Factors No. Mult. of Gentleman’s algorithm
N=2"-1 N “N,...N, No. Mult. of New algorithm NN, +Ny+ -+ N, —k+1)
25 -1 31 120 961
281 79 13+ 16 = 208 63(7+9 -1)=945

Table 2. The Complexity of Decoding RS of 2" - 1 Points forn = 5, 6

Factors No. mult. of new No. mult. of Gentleman’s algorithm No. mult. of the standard algorithm

N Nl-Nz'--Nk algorithm 2N(N1+N2+N3+"'—k+1) (N—I)(d—l)+t2
31 31 2% 120 = 240 2% 961 =1922 30x 16 +82 = 544
63 79 2% 208 = 416 2X 945 =1890 62X 30 +15% = 2085
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